Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
Cell Mol Life Sci ; 81(1): 186, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632116

RESUMO

Pathogenic variants in SLC6A8, the gene which encodes creatine transporter SLC6A8, prevent creatine uptake in the brain and result in a variable degree of intellectual disability, behavioral disorders (e.g., autism spectrum disorder), epilepsy, and severe speech and language delay. There are no treatments to improve neurodevelopmental outcomes for creatine transporter deficiency (CTD). In this spotlight, we summarize recent advances in innovative molecules to treat CTD, with a focus on dodecyl creatine ester, the most promising drug candidate.


Assuntos
Transtorno do Espectro Autista , Encefalopatias Metabólicas Congênitas , Creatina/deficiência , Deficiência Intelectual , Retardo Mental Ligado ao Cromossomo X , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Humanos , Creatina/genética , Creatina/uso terapêutico , Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Encefalopatias Metabólicas Congênitas/genética , Deficiência Intelectual/genética , Retardo Mental Ligado ao Cromossomo X/tratamento farmacológico , Retardo Mental Ligado ao Cromossomo X/genética
2.
J Biol Chem ; 300(1): 105491, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995940

RESUMO

l-2-hydroxyglutarate dehydrogenase (L2HGDH) is a mitochondrial membrane-associated metabolic enzyme, which catalyzes the oxidation of l-2-hydroxyglutarate (l-2-HG) to 2-oxoglutarate (2-OG). Mutations in human L2HGDH lead to abnormal accumulation of l-2-HG, which causes a neurometabolic disorder named l-2-hydroxyglutaric aciduria (l-2-HGA). Here, we report the crystal structures of Drosophila melanogaster L2HGDH (dmL2HGDH) in FAD-bound form and in complex with FAD and 2-OG and show that dmL2HGDH exhibits high activity and substrate specificity for l-2-HG. dmL2HGDH consists of an FAD-binding domain and a substrate-binding domain, and the active site is located at the interface of the two domains with 2-OG binding to the re-face of the isoalloxazine moiety of FAD. Mutagenesis and activity assay confirmed the functional roles of key residues involved in the substrate binding and catalytic reaction and showed that most of the mutations of dmL2HGDH equivalent to l-2-HGA-associated mutations of human L2HGDH led to complete loss of the activity. The structural and biochemical data together reveal the molecular basis for the substrate specificity and catalytic mechanism of L2HGDH and provide insights into the functional roles of human L2HGDH mutations in the pathogeneses of l-2-HGA.


Assuntos
Oxirredutases do Álcool , Encefalopatias Metabólicas Congênitas , Drosophila melanogaster , Modelos Moleculares , Animais , Humanos , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Encefalopatias Metabólicas Congênitas/enzimologia , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/fisiopatologia , Drosophila melanogaster/enzimologia , Glutaratos/metabolismo , Mutação , Domínio Catalítico/genética , Especificidade por Substrato/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
J Mol Biol ; 436(2): 168383, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070861

RESUMO

Creatine is an essential metabolite for the storage and rapid supply of energy in muscle and nerve cells. In humans, impaired metabolism, transport, and distribution of creatine throughout tissues can cause varying forms of mental disability, also known as creatine deficiency syndrome (CDS). So far, 80 mutations in the creatine transporter (SLC6A8) have been associated to CDS. To better understand the effect of human genetic variants on the physiology of SLC6A8 and their possible impact on CDS, we studied 30 missense variants including 15 variants of unknown significance, two of which are reported here for the first time. We expressed these variants in HEK293 cells and explored their subcellular localization and transport activity. We also applied computational methods to predict variant effect and estimate site-specific changes in thermodynamic stability. To explore variants that might have a differential effect on the transporter's conformers along the transport cycle, we constructed homology models of the inward facing, and outward facing conformations. In addition, we used mass-spectrometry to study proteins that interact with wild type SLC6A8 and five selected variants in HEK293 cells. In silico models of the protein complexes revealed how two variants impact the interaction interface of SLC6A8 with other proteins and how pathogenic variants lead to an enrichment of ER protein partners. Overall, our integrated analysis disambiguates the pathogenicity of 15 variants of unknown significance revealing diverse mechanisms of pathogenicity, including two previously unreported variants obtained from patients suffering from the creatine deficiency syndrome.


Assuntos
Encefalopatias Metabólicas Congênitas , Creatina , Retardo Mental Ligado ao Cromossomo X , Proteínas do Tecido Nervoso , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores , Humanos , Creatina/deficiência , Células HEK293 , Retardo Mental Ligado ao Cromossomo X/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Encefalopatias Metabólicas Congênitas/genética , Análise Mutacional de DNA/métodos , Mutação de Sentido Incorreto , Biologia Computacional/métodos
4.
Mol Genet Metab ; 140(3): 107694, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37708665

RESUMO

Creatine transporter deficiency (CTD), caused by pathogenic variants in SLC6A8, is the second most common cause of X-linked intellectual disability. Symptoms include intellectual disability, epilepsy, and behavioral disorders and are caused by reduced cerebral creatine levels. Targeted treatment with oral supplementation is available, however the treatment efficacy is still being investigated. There are clinical and theoretical indications that heterozygous females with CTD respond better to supplementation treatment than hemizygous males. Unfortunately, heterozygous females with CTD often have more subtle and uncharacteristic clinical and biochemical phenotypes, rendering diagnosis more difficult. We report a new female case who presented with learning disabilities and seizures. After determining the diagnosis with molecular genetic testing confirmed by proton magnetic resonance spectroscopy (1H-MRS), the patient was treated with supplementation treatment including creatine, arginine, and glycine. After 28 months of treatment, the patient showed prominent clinical improvement and increased creatine levels in the brain. Furthermore, we provide a review of the 32 female cases reported in the current literature including a description of phenotypes, genotypes, diagnostic approaches, and effects of supplementation treatment. Based on this, we find that supplementation treatment should be tested in heterozygous female patients with CTD, and a prospective treatment underlines the importance of diagnosing these patients. The diagnosis should be suspected in a broad clinical spectrum of female patients and can only be made by molecular genetic testing. 1H-MRS of cerebral creatine levels is essential for establishing the diagnosis in females, and especially valuable when assessing variants of unknown significance.


Assuntos
Encefalopatias Metabólicas Congênitas , Deficiência Intelectual , Retardo Mental Ligado ao Cromossomo X , Masculino , Humanos , Feminino , Deficiência Intelectual/genética , Creatina , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Retardo Mental Ligado ao Cromossomo X/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas do Tecido Nervoso
5.
Acta Neurol Belg ; 123(6): 2315-2323, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37378753

RESUMO

BACKGROUND: L-2-Hydroxyglutaric aciduria (L2HGA) is a rare progressive neurometabolic disorder with variable clinical presentation including cerebellar ataxia, psychomotor retardation, seizures, macrocephaly and speech problems. In this study, we aimed at identifying the genetic cause in two unrelated families suspected with L2HGA. METHODS: Exome sequencing was performed on two patients from family 1 with suspected L2HGA. MLPA analysis was carried out on the index patient of family 2 to detect deletions/duplications in the L2HGDH gene. Sanger sequencing was carried out to validate the identified variants and to confirm segregation of the variants in the family members. RESULTS: In family 1, a novel homozygous variant c.1156C > T resulting in a nonsense mutation p.Gln386Ter was identified in the L2HGDH gene. The variant segregated with autosomal recessive inheritance in the family. In family 2, a homozygous deletion of exon 10 in the L2HGDH gene was identified in the index patient using MLPA analysis. PCR validation confirmed the presence of the deletion variant in the patient which is not present in the unaffected mother or an unrelated control. CONCLUSION: This study identified novel pathogenic variants in the L2HGDH gene in patients with L2HGA. These findings contribute to the understanding of the genetic basis of L2HGA and highlight the importance of genetic testing for diagnosis and genetic counseling of affected families.


Assuntos
Encefalopatias Metabólicas Congênitas , Feminino , Humanos , Oxirredutases do Álcool/genética , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/diagnóstico , Homozigoto , Mutação/genética , Deleção de Sequência
6.
J Vet Intern Med ; 37(2): 676-680, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36880414

RESUMO

CASE DESCRIPTION: A 9-month-old intact male domestic shorthair cat was evaluated for increasing frequency of generalized tonic-clonic seizures. CLINICAL FINDINGS: The cat was reported to have had episodes of circling between the seizures. Upon examination, the cat had bilateral inconsistent menace response but otherwise normal physical and neurological examinations. DIAGNOSTICS: Magnetic resonance imaging (MRI) of the brain identified multifocal, small, rounded intra-axial lesions within the subcortical white matter containing fluid with similar characteristics as cerebrospinal fluid. Evaluation of urine organic acids showed increased excretion of 2-hydroxyglutaric acid. An XM_023255678.2:c.397C>T nonsense variant in the L2HGDH gene encoding L-2-hydroxyglutarate dehydrogenase was identified using whole genome sequencing. TREATMENT AND OUTCOME: Levetiracetam treatment was initiated at 20 mg/kg PO q8h, but the cat died after a seizure 10 days later. CLINICAL RELEVANCE: We report the second pathogenic gene variant in L-2-hydroxyglutaric aciduria in cats and describe for the first time multicystic cerebral lesions on MRI.


Assuntos
Encefalopatias Metabólicas Congênitas , Doenças do Gato , Animais , Gatos , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/veterinária , Doenças do Gato/diagnóstico , Doenças do Gato/tratamento farmacológico , Doenças do Gato/genética , Glutaratos , Imageamento por Ressonância Magnética/veterinária , Mutação de Sentido Incorreto , Convulsões/diagnóstico , Convulsões/veterinária , Oxirredutases do Álcool/metabolismo
7.
Am J Med Genet A ; 191(6): 1614-1618, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36891747

RESUMO

Ethylmalonic encephalopathy (EE) is a rare, severe, autosomal recessive condition caused by pathogenic variants in ETHE1 leading to progressive encephalopathy, hypotonia evolving to dystonia, petechiae, orthostatic acrocyanosis, diarrhea, and elevated ethylmalonic acid in urine. In this case report, we describe a patient with only mild speech and gross motor delays, subtle biochemical abnormalities, and normal brain imaging found to be homozygous for a pathogenic ETHE1 variant (c.586G>A) via whole exome sequencing. This case highlights the clinical heterogeneity of ETHE1 mutations and the utility of whole-exome sequencing in diagnosing mild cases of EE.


Assuntos
Encefalopatias Metabólicas Congênitas , Encefalopatias , Púrpura , Humanos , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Púrpura/diagnóstico , Púrpura/genética , Encéfalo/patologia , Encefalopatias/diagnóstico , Encefalopatias/genética , Encefalopatias/patologia , Proteínas Mitocondriais/genética , Proteínas de Transporte Nucleocitoplasmático/genética
8.
J Investig Med High Impact Case Rep ; 11: 23247096231154438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36752093

RESUMO

Cerebral creatine deficiency syndromes (CCDS) are a rare group of inherited metabolic disorders (IMDs) that often present with nonspecific findings including global developmental delay (GDD), intellectual disability (ID), seizures, hypotonia, and behavioral differences. Creatine transporter (CRTR) deficiency is the most common CCDS, exhibiting X-linked inheritance and an estimated prevalence as high as 2.6% in individuals with neurodevelopmental disorders. Here, we present a 20-month-old boy with worsening failure to thrive (FTT) and GDD admitted for evaluation. He was found to have persistently low serum creatinine levels and a family history notable for a mother with learning disabilities and a maternal male cousin with GDD. Urine analyses revealed a marked elevation of creatine and elevated creatine:creatinine ratio suggestive of CRTR deficiency. Molecular genetic testing of SLC6A8 identified a maternally inherited hemizygous variant and brain magnetic resonance spectroscopy (MRS) showed diffusely diminished creatine peaks, further supporting the diagnosis of CRTR deficiency. The proband was started on creatine, arginine, and glycine supplementation and has demonstrated improved development. This case highlights that CRTR deficiency should be considered in all patients presenting with FTT and abnormal neurodevelopmental features, particularly if creatinine levels are low on serum chemistry studies. The nonspecific presentation of this condition in males and females likely has resulted in CRTR deficiency being underdiagnosed. There are existing therapies for individuals affected with CRTR deficiency and other CCDS, highlighting the importance of early diagnosis and intervention for affected individuals.


Assuntos
Encefalopatias Metabólicas Congênitas , Deficiência Intelectual , Humanos , Lactente , Masculino , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/patologia , Creatina/genética , Creatina/metabolismo , Creatinina , Insuficiência de Crescimento , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores
9.
Clin Neurol Neurosurg ; 225: 107529, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36610237

RESUMO

L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare autosomal recessive disease resulted from the mutated gene L-2- hydroxyglutarate dehydrogenase (L2HGDH). We presented a female case who inherited the disease from her consanguineous relatives and suffered from cognitive impairment, seizure, and ataxia. Using cerebral magnetic resonance imaging (MRI), urine organic acid test, and high-throughput DNA sequencing, a novel homozygous missense mutation was found in the L2HGDH gene, namely c 0.847 G>A/p. G283R in exon 7. Summarizing the clinical information of the patient with L-2-HGA exhibited to be beneficial for the diagnosis of this rare disease. In summary, the pathogenic missense mutation in the case was reliably confirmed using the bioinformatics analysis.


Assuntos
Encefalopatias Metabólicas Congênitas , Mutação de Sentido Incorreto , Humanos , Feminino , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Imageamento por Ressonância Magnética , Homozigoto , Mutação , Oxirredutases do Álcool/genética
10.
Am J Med Genet A ; 188(9): 2707-2711, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35785415

RESUMO

D-2-hydroxyglutaric aciduria (D-2-HGA) is a rare neurometabolic disease with two main subtypes, caused by either inactivating variants in D2HGDH (type I) or germline gain of function variants in IDH2 (type II), that result in accumulation of the same toxic metabolite, D-2-hydroxyglutarate. The main clinical features of both are neurologic, including developmental delay, hypotonia, and seizures. Dilated cardiomyopathy is a unique feature thus far only reported in type II. As somatic variants in IDH2 are frequently identified in several different types of cancer, including acute myeloid leukemia (AML), a link between cancer and this metabolic disease has been proposed; however, there is no reported cancer in patients with either type of D-2-HGA. Murine models have demonstrated how D-2-hydroxyglutarate alters metabolism and epigenetics, a potential mechanism by which this metabolite may cause cancer and cardiomyopathy. Here, we report the first case of both AML and dilated cardiomyopathy in a pediatric patient with D-2-HGA type I, who was treated with an anthracycline-free regimen. This report may expand the clinical spectrum of this rare metabolic disease and provide insight on long-term surveillance and care. However, this case is complicated by the presence of a complex chromosomal rearrangement resulting in a 25.5 Mb duplication of 1q41 and a 2.38 Mb deletion of 2q37.3. Thus, the direct causal relationship between D-2-HGA and leukemogenesis or cardiomyopathy warrants further scrutiny.


Assuntos
Encefalopatias Metabólicas Congênitas , Cardiomiopatias , Cardiomiopatia Dilatada , Leucemia Mieloide Aguda , Doenças Metabólicas , Anormalidades Urogenitais , Animais , Encefalopatias Metabólicas Congênitas/complicações , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Cardiomiopatias/complicações , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Criança , Humanos , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Camundongos , Doenças Raras
11.
Clin Chim Acta ; 532: 29-36, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588794

RESUMO

Cerebral creatine deficiency syndromes (CCDSs) are a group of rare mendelian disorders mainly characterized by intellectual disability, movement anomaly, behavior disorder and seizures. SLC6A8, GAMT, and GATM are known genes responsible for CCDS. In this study, seven pediatric patients with developmental delay were recruited and submitted to a series of clinical evaluation, laboratory testing, and genetic analysis. The clinical manifestations and core biochemical indications of each child were basically consistent with the diagnosis of CCDS. Genetic diagnosis determined that all patients were positive for SLC6A8 or GAMT variation. A total of 12 variants were identified in this cohort, including six novel ones. The frequency of these variants, the Revel scores and the conservatism of the affected amino acids support their pathogenicity. Our findings expanded the mutation spectrum of CCDS disorders, and provided solid evidence for the counseling to affected families.


Assuntos
Encefalopatias Metabólicas Congênitas , Guanidinoacetato N-Metiltransferase , Deficiência Intelectual , Proteínas do Tecido Nervoso , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores , Encefalopatias Metabólicas Congênitas/diagnóstico , Encefalopatias Metabólicas Congênitas/genética , Criança , Creatina/deficiência , Guanidinoacetato N-Metiltransferase/genética , Humanos , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Síndrome
12.
Brain Dev ; 44(4): 271-280, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34974949

RESUMO

INTRODUCTION: Cerebral creatine deficiency syndromes (CCDS) are a group of potentially treatable neurometabolic disorders. The clinical, genetic profile and follow up outcome of Indian CCDS patients is presented. MATERIALS AND METHODS: This was a retrospective cohort of CCDS patients seen over six-years. Diagnosis was based either on low creatine peak on proton magnetic resonance spectroscopy (MRS) and/or genetic evaluation. RESULTS: Thirteen patients were eligible [8 creatine transporter deficiency (CTD), 4 guanidinoacetate methyltransferase (GAMT) deficiency and 1 could not be classified]. The mean (±SD) age at diagnosis was 7.2(±5.0) years. Clinical manifestations included intellectual disability (ID) with significant expressive speech delay in all. Most had significant behavior issues (8/13) and/or autism (8/13). All had history of convulsive seizures (11/13 had epilepsy; 2 patients only had febrile seizures) and 2/13 had movement disorder. Constipation was the commonest non-neurological manifestation (5/13 patients). Cranial MRI was normal in all CTD patients but showed globus pallidus hyperintensity in all four with GAMT deficiency. MRS performed in 11/13 patients, revealed abnormally low creatine peak. A causative genetic variant (novel mutation in nine) was identified in 12 patients. Three GAMT deficiency and one CTD patient reported neurodevelopmental improvement and good seizure control after creatine supplementation. CONCLUSION: Intellectual disability, disproportionate speech delay, autism, and epilepsy, were common in our CCDS patients. A normal structural neuroimaging with easily controlled febrile and/or afebrile seizures differentiated CTD from GAMT deficiency patients who had abnormal neuroimaging and often difficult to control epilepsy and movement disorder.


Assuntos
Encefalopatias Metabólicas Congênitas/diagnóstico , Creatina/deficiência , Guanidinoacetato N-Metiltransferase/deficiência , Transtornos do Desenvolvimento da Linguagem/diagnóstico , Retardo Mental Ligado ao Cromossomo X/diagnóstico , Transtornos dos Movimentos/congênito , Transtornos do Neurodesenvolvimento/diagnóstico , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Encefalopatias Metabólicas Congênitas/complicações , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/fisiopatologia , Criança , Pré-Escolar , Creatina/genética , Feminino , Seguimentos , Guanidinoacetato N-Metiltransferase/genética , Humanos , Índia , Transtornos do Desenvolvimento da Linguagem/complicações , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Masculino , Retardo Mental Ligado ao Cromossomo X/complicações , Retardo Mental Ligado ao Cromossomo X/genética , Retardo Mental Ligado ao Cromossomo X/fisiopatologia , Transtornos dos Movimentos/complicações , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/fisiopatologia , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Estudos Retrospectivos
13.
Mol Genet Metab ; 135(1): 15-26, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34972654

RESUMO

Creatine deficiency syndromes (CDS) are inherited metabolic disorders caused by mutations in GATM, GAMT and SLC6A8 and mainly affect central nervous system (CNS). AGAT- and GAMT-deficient patients lack the functional brain endogenous creatine (Cr) synthesis pathway but express the Cr transporter SLC6A8 at blood-brain barrier (BBB), and can thus be treated by oral supplementation of high doses of Cr. For Cr transporter deficiency (SLC6A8 deficiency or CTD), current treatment strategies benefit one-third of patients. However, as their phenotype is not completely reversed, and for the other two-thirds of CTD patients, the development of novel more effective therapies is needed. This article aims to review the current knowledge on Cr metabolism and CDS clinical aspects, highlighting their current treatment possibilities and the most recent research perspectives on CDS potential therapeutics designed, in particular, to bring new options for the treatment of CTD.


Assuntos
Encefalopatias Metabólicas Congênitas , Retardo Mental Ligado ao Cromossomo X , Encéfalo/metabolismo , Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Encefalopatias Metabólicas Congênitas/genética , Creatina , Guanidinoacetato N-Metiltransferase , Humanos , Retardo Mental Ligado ao Cromossomo X/tratamento farmacológico , Retardo Mental Ligado ao Cromossomo X/genética , Síndrome
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(2): 213-215, 2022 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-35076923

RESUMO

OBJECTIVE: To explore the genetic basis for a child affected with cerebral creatine deficiency syndrome 1 (CCDS1). METHODS: High-throughput sequencing was carried out to screen pathogenic variant associated with the clinical phenotype of the proband. The candidate variant was verified by Sanger sequencing. RESULTS: High-throughput sequencing revealed that the proband has carried heterozygous c.327delG variant of the SLC6A8 gene, which was verified by Sanger sequencing.Neither parent was found to carry the same variant. CONCLUSION: The de novo heterozygous c.327delG variant of the SLC6A8 gene probably underlay the CCDS1 in this child.


Assuntos
Encefalopatias Metabólicas Congênitas , Retardo Mental Ligado ao Cromossomo X , Encefalopatias Metabólicas Congênitas/genética , Creatina , Testes Genéticos , Heterozigoto , Humanos , Mutação
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-928392

RESUMO

OBJECTIVE@#To explore the genetic basis for a child affected with cerebral creatine deficiency syndrome 1 (CCDS1).@*METHODS@#High-throughput sequencing was carried out to screen pathogenic variant associated with the clinical phenotype of the proband. The candidate variant was verified by Sanger sequencing.@*RESULTS@#High-throughput sequencing revealed that the proband has carried heterozygous c.327delG variant of the SLC6A8 gene, which was verified by Sanger sequencing.Neither parent was found to carry the same variant.@*CONCLUSION@#The de novo heterozygous c.327delG variant of the SLC6A8 gene probably underlay the CCDS1 in this child.


Assuntos
Humanos , Encefalopatias Metabólicas Congênitas/genética , Creatina , Testes Genéticos , Heterozigoto , Retardo Mental Ligado ao Cromossomo X , Mutação
16.
JCI Insight ; 6(17)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34324436

RESUMO

The creatine transporter (CrT) maintains brain creatine (Cr) levels, but the effects of its deficiency on energetics adaptation under stress remain unclear. There are also no effective treatments for CrT deficiency, the second most common cause of X-linked intellectual disabilities. Herein, we examined the consequences of CrT deficiency in brain energetics and stress-adaptation responses plus the effects of intranasal Cr supplementation. We found that CrT-deficient (CrT-/y) mice harbored dendritic spine and synaptic dysgenesis. Nurtured newborn CrT-/y mice maintained baseline brain ATP levels, with a trend toward signaling imbalance between the p-AMPK/autophagy and mTOR pathways. Starvation elevated the signaling imbalance and reduced brain ATP levels in P3 CrT-/y mice. Similarly, CrT-/y neurons and P10 CrT-/y mice showed an imbalance between autophagy and mTOR signaling pathways and greater susceptibility to cerebral hypoxia-ischemia and ischemic insults. Notably, intranasal administration of Cr after cerebral ischemia increased the brain Cr/N-acetylaspartate ratio, partially averted the signaling imbalance, and reduced infarct size more potently than intraperitoneal Cr injection. These findings suggest important functions for CrT and Cr in preserving the homeostasis of brain energetics in stress conditions. Moreover, intranasal Cr supplementation may be an effective treatment for congenital CrT deficiency and acute brain injury.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Encéfalo/metabolismo , Creatina/deficiência , DNA/genética , Proteínas de Membrana Transportadoras/genética , Retardo Mental Ligado ao Cromossomo X/genética , Mutação , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/deficiência , Animais , Animais Recém-Nascidos , Encéfalo/ultraestrutura , Encefalopatias Metabólicas Congênitas/metabolismo , Encefalopatias Metabólicas Congênitas/patologia , Creatina/genética , Creatina/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Homeostase , Masculino , Proteínas de Membrana Transportadoras/deficiência , Retardo Mental Ligado ao Cromossomo X/metabolismo , Retardo Mental Ligado ao Cromossomo X/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Microscopia Eletrônica , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/genética , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/metabolismo
17.
Genes (Basel) ; 12(5)2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062805

RESUMO

A 7-month-old, spayed female, domestic longhair cat with L-2-hydroxyglutaric aciduria (L-2-HGA) was investigated. The aim of this study was to investigate the clinical signs, metabolic changes and underlying genetic defect. The owner of the cat reported a 4-month history of multiple paroxysmal seizure-like episodes, characterized by running around the house, often in circles, with abnormal behavior, bumping into obstacles, salivating and often urinating. The episodes were followed by a period of disorientation and inappetence. Neurological examination revealed an absent bilateral menace response. Routine blood work revealed mild microcytic anemia but biochemistry, ammonia, lactate and pre- and post-prandial bile acids were unremarkable. MRI of the brain identified multifocal, bilaterally symmetrical and T2-weighted hyperintensities within the prosencephalon, mesencephalon and metencephalon, primarily affecting the grey matter. Urinary organic acids identified highly increased levels of L-2-hydroxyglutaric acid. The cat was treated with the anticonvulsants levetiracetam and phenobarbitone and has been seizure-free for 16 months. We sequenced the genome of the affected cat and compared the data to 48 control genomes. L2HGDH, coding for L-2-hydroxyglutarate dehydrogenase, was investigated as the top functional candidate gene. This search revealed a single private protein-changing variant in the affected cat. The identified homozygous variant, XM_023255678.1:c.1301A>G, is predicted to result in an amino acid change in the L2HGDH protein, XP_023111446.1:p.His434Arg. The available clinical and biochemical data together with current knowledge about L2HGDH variants and their functional impact in humans and dogs allow us to classify the p.His434Arg variant as a causative variant for the observed neurological signs in this cat.


Assuntos
Oxirredutases do Álcool/genética , Encefalopatias Metabólicas Congênitas/veterinária , Doenças do Gato/genética , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/uso terapêutico , Encefalopatias Metabólicas Congênitas/tratamento farmacológico , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/patologia , Doenças do Gato/tratamento farmacológico , Doenças do Gato/patologia , Gatos , Feminino , Testes Genéticos/veterinária , Levetiracetam/administração & dosagem , Levetiracetam/uso terapêutico , Mutação de Sentido Incorreto
18.
Hum Mutat ; 42(6): 745-761, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33942428

RESUMO

KARS1 encodes a lysyl-transfer RNA synthetase (LysRS) that links lysine to its cognate transfer RNA. Two different KARS1 isoforms exert functional effects in cytosol and mitochondria. Bi-allelic pathogenic variants in KARS1 have been associated to sensorineural hearing and visual loss, neuropathy, seizures, and leukodystrophy. We report the clinical, biochemical, and neuroradiological features of nine individuals with KARS1-related disorder carrying 12 different variants with nine of them being novel. The consequences of these variants on the cytosol and/or mitochondrial LysRS were functionally validated in yeast mutants. Most cases presented with severe neurological features including congenital and progressive microcephaly, seizures, developmental delay/intellectual disability, and cerebral atrophy. Oculo-motor dysfunction and immuno-hematological problems were present in six and three cases, respectively. A yeast growth defect of variable severity was detected for most variants on both cytosolic and mitochondrial isoforms. The detrimental effects of two variants on yeast growth were partially rescued by lysine supplementation. Congenital progressive microcephaly, oculo-motor dysfunction, and immuno-hematological problems are emerging phenotypes in KARS1-related disorder. The data in yeast emphasize the role of both mitochondrial and cytosolic isoforms in the pathogenesis of KARS1-related disorder and supports the therapeutic potential of lysine supplementation at least in a subset of patients.


Assuntos
Anormalidades Múltiplas/genética , Lisina-tRNA Ligase/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Adolescente , Alelos , Encefalopatias Metabólicas Congênitas/complicações , Encefalopatias Metabólicas Congênitas/genética , Encefalopatias Metabólicas Congênitas/patologia , Criança , Pré-Escolar , Estudos de Coortes , Citosol/metabolismo , Progressão da Doença , Feminino , Homozigoto , Humanos , Lactente , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Microcefalia/complicações , Microcefalia/genética , Microcefalia/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Organismos Geneticamente Modificados , Linhagem , Fenótipo , Saccharomyces cerevisiae
19.
Mitochondrion ; 58: 64-71, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33639274

RESUMO

Ethylmalonic encephalopathy (EE) is a rare autosomal recessive inborn error of metabolism. To study the molecular effects of ETHE1 p. D165H mutation, we employed mass spectrometry-based mitochondrial proteome and phosphoproteome profiling in the human skeletal muscle. Eighty-six differentially altered proteins were identified, of which thirty-seven mitochondrial proteins were differentially expressed, and most of the proteins (37%) were down-regulated in the OXPHOS complex-IV. Also, nine phosphopeptides that correspond to eight mitochondrial proteins were significantly affected in EE patient. These altered proteins recognized are involved in several pathways and molecular functions, predominantly in oxidoreductase activity. This is the first study that has integrated proteome and phosphoproteome of skeletal muscle and identified multiple proteins associated in the pathogenesis of EE.


Assuntos
Encefalopatias Metabólicas Congênitas/genética , Mitocôndrias Musculares/fisiologia , Proteínas Mitocondriais/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Mutação , Proteínas de Transporte Nucleocitoplasmático/genética , Proteoma , Púrpura/genética , Adulto , Encefalopatias Metabólicas Congênitas/fisiopatologia , Regulação para Baixo , Humanos , Masculino , Fosforilação Oxidativa , Proteômica/métodos , Púrpura/fisiopatologia , Transdução de Sinais
20.
Biochimie ; 183: 55-62, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33596448

RESUMO

Succinyl-CoA:3-oxoacid coenzyme A transferase deficiency (SCOTD) is a rare autosomal recessive disorder of ketone body utilization caused by mutations in OXCT1. We performed a systematic literature search and evaluated clinical, biochemical and genetic data on 34 previously published and 10 novel patients with SCOTD. Structural mapping and in silico analysis of protein variants is also presented. All patients presented with severe ketoacidotic episodes. Age at first symptoms ranged from 36 h to 3 years (median 7 months). About 70% of patients manifested in the first year of life, approximately one quarter already within the neonatal period. Two patients died, while the remainder (95%) were alive at the time of the report. Almost all the surviving patients (92%) showed normal psychomotor development and no neurologic abnormalities. A total of 29 missense mutations are reported. Analysis of the published crystal structure of the human SCOT enzyme, paired with both sequence-based and structure-based methods to predict variant pathogenicity, provides insight into the biochemical consequences of the reported variants. Pathogenic variants cluster in SCOT protein regions that affect certain structures of the protein. The described pathogenic variants can be viewed in an interactive map of the SCOT protein at https://michelanglo.sgc.ox.ac.uk/r/oxct. This comprehensive data analysis provides a systematic overview of all cases of SCOTD published to date. Although SCOTD is a rather benign disorder with often favourable outcome, metabolic crises can be life-threatening or even fatal. As the diagnosis can only be made by enzyme studies or mutation analyses, SCOTD may be underdiagnosed.


Assuntos
Acidose , Encefalopatias Metabólicas Congênitas , Coenzima A-Transferases/deficiência , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Acidose/enzimologia , Acidose/genética , Encefalopatias Metabólicas Congênitas/enzimologia , Encefalopatias Metabólicas Congênitas/genética , Coenzima A-Transferases/química , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Cristalografia por Raios X , Humanos , Corpos Cetônicos/química , Corpos Cetônicos/genética , Corpos Cetônicos/metabolismo , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...